Online Large-Margin Training of Syntactic and Structural Translation Features
نویسندگان
چکیده
Minimum-error-rate training (MERT) is a bottleneck for current development in statistical machine translation because it is limited in the number of weights it can reliably optimize. Building on the work of Watanabe et al., we explore the use of the MIRA algorithm of Crammer et al. as an alternative to MERT. We first show that by parallel processing and exploiting more of the parse forest, we can obtain results using MIRA that match or surpass MERT in terms of both translation quality and computational cost. We then test the method on two classes of features that address deficiencies in the Hiero hierarchical phrasebased model: first, we simultaneously train a large number of Marton and Resnik’s soft syntactic constraints, and, second, we introduce a novel structural distortion model. In both cases we obtain significant improvements in translation performance. Optimizing them in combination, for a total of 56 feature weights, we improve performance by 2.6 B on a subset of the NIST 2006 Arabic-English evaluation data.
منابع مشابه
Online Large-Margin Training for Statistical Machine Translation
We achieved a state of the art performance in statistical machine translation by using a large number of features with an online large-margin training algorithm. The millions of parameters were tuned only on a small development set consisting of less than 1K sentences. Experiments on Arabic-toEnglish translation indicated that a model trained with sparse binary features outperformed a conventio...
متن کاملDiscriminative Feature-Rich Modeling for Syntax-Based Machine Translation
State-of-the-art statistical machine translation systems are most frequently built on phrasebased (Koehn et al., 2003) or hierarchical translation models (Chiang, 2005). In addition, a wide variety of models exploiting syntactic annotation on either the source or target side (or both) have recently been developed and also give state-of-the-art performance (Galley et al., 2006; Zollmann and Venu...
متن کاملTopicalization in English Translation of the Holy Quran: A Comparative Study
The Holy Quran, as an Arabic masterpiece, comprises great domains of syntactical, phonological, and semantic literary patterns. These patterns work as the shackle of translators. This study examined the application of the most common shift strategies in Catford‟s linguistic model for translation of topicalization in chapter 29 of the Holy Quran. The topicalized cases were compared to their coun...
متن کاملExtending a probabilistic phrase alignment approach for SMT
Phrase alignment is a crucial step in phrase-based statistical machine translation. We explore a way of improving phrase alignment by adding syntactic information in the form of chunks as soft constraints guided by an in-depth and detailed analysis on a hand-aligned data set. We extend a probabilistic phrase alignment model that extracts phrase pairs by optimizing phrase pair boundaries over th...
متن کاملOptimization Strategies for Online Large-Margin Learning in Machine Translation
The introduction of large-margin based discriminative methods for optimizing statistical machine translation systems in recent years has allowed exploration into many new types of features for the translation process. By removing the limitation on the number of parameters which can be optimized, these methods have allowed integrating millions of sparse features. However, these methods have not ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008